

17EC45

Fourth Semester B.E. Degree Examination, July/August 2021 Linear Integrated Circuits

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. With a neat circuit diagram and relevant equations, explain the basic op-amp circuit.
(07 Marks)
b. Define the following terms as applied to an op-amp and mention their typical values for IC741: (i) CMRR (ii) Slew rate (iii) PSRR (iv) Input offset voltage
(08 Marks)
c. Show that $\mathrm{V}_{\mathrm{O}_{\mathrm{CM}}}=\frac{\mathrm{V}_{\mathrm{i}_{\mathrm{CM}}}}{\mathrm{CMRR}} \times \mathrm{A}_{\mathrm{V}}$
(05 Marks)

2 a. Explain the operation of direct coupled non inverting amplifier. Mention the design steps.
(07 Marks)
b. Explain the working of a three input inverting summer amplifier and show how it can be modified into averaging circuit.
(08 Marks)
c. For the op-amp circuit shown in Fig.Q2(c), calculate the gain.

Fig.Q2(c)
(05 Marks)
3 a. With a neat circuit diagram, explain the operation of high input impedance capacitor coupled non inverting amplifier.
(09 Marks)
b. A capacitor coupled voltage follower circuit is to be designed to have a lower cut-off frequency of 120 Hz . The load resistance is $8.2 \mathrm{~K} \Omega$ and the op-amp used has a maximum bias current of 600 nA . Design a suitable circuit. Calculate the new cut-off frequency when the load resistance is changed to $4.7 \mathrm{~K} \Omega$.
(06 Marks)
c. Explain the operation of capacitor coupled inverting amplifier using single polarity supply.

4 a. With a neat circuit diagram, explain the operation of instrumentation amplifier. (09 Marks)
b. Design a low resistance voltage source to provide an output of 8 V using $741 \mathrm{op}-\mathrm{amp}$ with $\pm 15 \mathrm{~V}$ supply and maximum output current is to be 60 mA . Use a suitable Zener diode. For $741 \mathrm{op}-\mathrm{amp} \mathrm{I}_{\mathrm{B}_{(\max)}}=500 \mathrm{nA}$.
(06 Marks)
c. Explain how a fullwave precision rectifier is implemented using Halfwave rectifier and a summer.
(05 Marks)
5 a. With a neat circuit diagram, explain the operation of inverting Schmitt trigger circuit.
(08 Marks)
b. Explain the working of Wien bridge oscillator using op-amp.
(06 Marks)
c. Design a capacitor coupled Zero Cross Detector (ZCD) using 741 op-amp having $\mathrm{I}_{\mathrm{B}_{\text {max) }}}=500 \mathrm{nA}$ and minimum signal frequency of 500 Hz . the supply voltage are $\pm 12 \mathrm{~V}$.
(06 Marks)

6 a. Draw an op-amp sample and hold circuit. Sketch the signal, control and output waveforms and explain the operation of the circuit.
(08 Marks)
b. Explain the operation of logarithmic amplifier using op-amp.
(06 Marks)
c. Design a RC phase shift oscillator to have an output frequency of 3.5 kHz using $741 \mathrm{op}-\mathrm{amp}$ with a supply voltage of $\pm 12 \mathrm{~V}$.
(06 Marks)
7 a. List the advantages and limitations of Active filters.
(06 Marks)
b. Explain the operation of First order low pass filter using op-amp and mention the design steps.
(08 Marks)
c. A single stage band pass filter is to be designed using 715 op-amp. The center frequency is to be 3.3 kHz with a passband approximately 50 Hz on each side. Determine the suitable component values. For $715 \mathrm{op}-\mathrm{amp}$ choose $\mathrm{I}_{\mathrm{B}_{(\max)}}=1.5 \mu \mathrm{~A}$.
(06 Marks)
8 a. With a neat circuit diagram, explain the working of voltage follower series regulator.
b. Explain the functional block of 723 general purpose regulator.
(06 Marks)
c. Design an adjustable regulator using IC7810 regulator to get an output voltage of 15 V and 25 mA . Given Quiscent current $=4.2 \mathrm{~mA}$.
(06 Marks)
9 a. With a neat block diagram, explain the operation of Phase Locked Loop (PLL). Also define:
(i) Pull in time
(ii) Lock range (iii) Capture range for a PLL
(08 Marks)
b. Explain the working of 3-bit R-2R Ladder types DAC.
c. What output voltage is produced by a DAC whose output range is 0 to 10 V and whose input binary is :
(i) 10 (for a 2 bit DAC)
(ii) 0110 (for a 4 bit DAC)
(iii) 10111100 (for a 8 bit DAC)
(06 Marks)
10 a. With a neat functional diagram, explain the operation of monostable multivibrator using 555 timer and obtain the expression for its pulse width.
(08 Marks)
b. With a neat block diagram, explain the working of successive approximation type ADC.
(06 Marks)
c. A 555 timer Astable multivibrator has $\mathrm{R}_{\mathrm{A}}=2.2 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{B}}=6.8 \mathrm{~K} \Omega$ and $\mathrm{C}=0.01 \mu \mathrm{~F}$. Calculate $\mathrm{T}_{\text {high }}, \mathrm{T}_{\text {Low }}$, free running frequency and duty cycle. Draw the circuit. (06 Marks)

